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1. Abstract
The 2000 Jasper Fire in the Black Hills of South Dakota was the largest wildfire to 
date in the region, burning over 83,000 acres of ponderosa pine forest. In 
collaboration with partners from the United States Forest Service (USFS) Black 
Hills Experimental Forest, USFS Rocky Mountain Research Station, and United 
States Geological Survey Geosciences and Environmental Change Science Center, 
we characterized post-fire forest regeneration within high-severity burn patches. 
We accomplished this by implementing novel conifer detection techniques using a 
snow index mask to create a winter, snow-on image composite from Landsat 8 
Operational Land Imager (OLI) and Sentinel-2 Multispectral Instrument (MSI) 
data. We utilized 2015 USFS stem maps of field-observed regeneration plots and 
ocularly sampled additional reforestation sites planted in 2001–2013. In Google 
Earth Engine (GEE), the field data and imagery were used to train a Random 
Forest (RF) model. The RF model classified 2021 conifer regeneration density as 
low, medium, or high across the high-severity burn area with an overall accuracy 
of 81.3%. Approximately 45.9% of the high-severity burn had low or no 
regeneration (0-40 trees per acre) 20 years post-fire. Given our partners' desire to 
find easily accessible low conifer regeneration zones, we identified 4,079 acres of 
priority planting sites that were within 1,500 feet of roads, had not been planted 
previously, and were larger than 50 acres. This method supports the use of snow-
on imagery as a successful technique to identify conifer regeneration.

Key Terms
Random Forest classification, forestry, conifer, regeneration, snow-on composites, 
high-severity fire

2. Introduction
2.1 Background Information
Wildfire has increased in frequency and severity over the past few decades, with 
the most dramatic changes occurring in mid-elevation conifer forests of the 
western United States. These shifts have been linked to hotter and drier climatic 
conditions and earlier timing of spring snowmelt (Westerling, 2016). Climate 
change has been shown to further impact these ecosystems by creating adverse 
conditions for conifer seedling success, greatly limiting natural regeneration 
(Rodman et al., 2020; Stevens-Rumann et al., 2018). 

Between August 24th and September 9th, 2000, the Jasper Fire burned 83,508 
acres of ponderosa pine (Pinus ponderosa) forest in the Black Hills of South 
Dakota. Around 27% of this burned area experienced high-severity fire (Figure 1), 
completely removing established forest and resetting ecological succession across 
large areas (Keyser et al., 2010). High-severity fire at this scale has large 
implications on the region’s timber economy and ecological function.
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Figure 1. Study area map illustrating high-severity burn areas of the Jasper fire in
the Black Hills National Forest, South Dakota.

The Black Hills National Forest is dominated by ponderosa pine forest, with other 
species occupying wetter and higher elevation regions. This includes white spruce 
(Picea glauca), the second-most abundant coniferous species, bur oak (Quercus 
macrocarpa) the most abundant deciduous species, and quaking aspen (Populus 
tremuloides) (Walters et al., 2013). Ponderosa pine regeneration is particularly 
hindered within high-severity burn areas that have experienced near-total stand 
loss. Its heavy, small-winged seeds make long-distance dispersal difficult, limiting 
regeneration by distance from surviving forest (Chambers et al., 2016). As a result,
ponderosa pine recolonization within high-severity burn patches may be slow and 
dependent on meeting certain environmental conditions.

Large-scale forest wildfires not only pose a challenge for conifer regeneration, but 
also for monitoring these well due to the laborious nature of field surveys. In 
contrast to field survey methods, satellite remote sensing can cover larger areas 
across longer time scales.  Therefore, remote sensing is an advantageous 
supplement to analyzing forest fire impacts over large temporal and spatial extents
(Pérez-Cabello et al., 2021). Commonly, remote sensing is used to monitor post-fire
regeneration of forests based on a return to growing-season greenness, measured 
with the Normalized Difference Vegetation Index (NDVI). However, this method 
does not distinguish between the recovery of different plant growth forms (i.e., 
shrubs, grasses, trees), nor deciduous and coniferous species. In forests like those 
in the Black Hills, the re-establishment of coniferous tree species is integral to the 
return to historical forest composition. It has been proposed that using a 
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combination of snow cover (snow-on) and growing season satellite images may 
better differentiate conifer from deciduous growth via remote sensing (Vanderhoof
& Hawbaker, 2018). This study applies these methods in tandem with field-
collected data to verify the application of snow-on imagery to isolate and map 
conifer regeneration 20 years following the Jasper Fire. 

2.2 Project Partners & Objectives
We collaborated with members from the United States Forest Service (USFS) 
Black Hills Experimental Forest, USFS Rocky Mountain Research Station, and 
United States Geological Survey (USGS) Geosciences and Environmental Science 
Center to identify and understand natural regeneration patterns within large, high-
severity fire patches of the Jasper Fire. Given the challenges posed to successful 
ponderosa pine recolonization, forest managers are concerned with the ecological 
resilience of these forests, which have the potential to convert to shrub or 
grassland if conifer regeneration is not successful (Coop et al., 2020). Ensuring a 
return to the previous ponderosa pine dominated ecosystem is important in order 
to maintain timber production and ecological function.

It is critical that forest managers have accurate information on the status of forest 
regeneration in order to prioritize reforestation efforts and develop long-term 
management plans. Current management decisions within the Black Hills National 
Forest are based on field-collected forest inventories, which can be time 
consuming and costly. Furthermore, resource managers are limited in what 
reforestation they can prescribe based on planting feasibility, expense, and time 
required to manage the 83,508 acres burned by the Jasper Fire. These assessments
are more feasible via remote sensing. However, in conifer-dominant forests like the
Black Hills, existing remote sensing techniques need further development to 
separate conifer regeneration from other vegetation. 

Utilizing snow-on imagery from open-source Earth observation data is a promising 
novel technique to detect conifer-specific regeneration. To provide our partners 
with valuable and cost-effective data on the status of forest recovery, we utilized 
Earth observations of Sentinel-2 Multispectral Instrument (MSI) and Landsat 8 
Operational Land Imager (OLI) to estimate forest recovery. Using snow-on imagery
with Random Forest modeling, we provided our partners with a map of 
regeneration density distribution 20 years post-fire. These results will help USDA 
Black Hills National Forest managers to assess and track Jasper Fire conifer 
regeneration success. 

3. Methodology 
3.1 Data Acquisition and Processing
3.1.1 In-situ Data
Our project partners at USFS collected field data on seedling density 15 years 
post-fire (2015). They established six, 4-hectare square plots across high-severity 
burn patches of the Jasper Fire (herein referred to as stem maps). Three plots were
within 200m of a parent tree and three greater than 200m from a parent tree. 
Species, location, and height were recorded for all trees within these plots. Plots 
encompassed a range of tree densities but were largely skewed towards lower-
density composition.
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We identified areas of known reforestation planting from the USFS Forest Activity 
Tracking System (FACTS) that had prescribed planting densities of 400 trees-per-
acre (TPA). FACTS has records of all USFS plantings that occurred during our 
study period in the Activity Silviculture Reforestation geospatial layer. We added 
additional high-density areas to our dataset by randomly sampling points within 
reforestation areas planted between 2001 and 2013, to be relatively consistent 
with seedling size in the stem maps measured in 2015.

3.1.2 Satellite Data
Burn severity across the Jasper Fire area was identified using Monitoring Trends in
Burn Severity (MTBS) Thematic Burn Severity classifications. MTBS is a multi-
agency program that maps the perimeter and burn severity of all wildfires in the 
United States larger than 1,000 acres to achieve consistent metrics when studying 
wildfires.

We utilized images from both Landsat 8 OLI(Collection 2, Tier 1, Level 2) and 
Sentinel-2 MSI(Level-2A). Using both satellites allowed us to capture a wider 
range of dates and snow conditions. We compiled images collected by these 
satellites from December 11th – April 10th, as these dates contained the most 
reliable snow cover in any given year based on a visual inspection of 2015 NAIP 
imagery. We applied this date range for the winters of 2019, 2020, and 2021 to 
provide a consistent picture of the vegetation and control for snow variation across
the years. The final image collection contained 222 scenes between the two 
satellites.

Topographic data were taken from the 30m-resolution NASA Digital Elevation 
Model (NASADEM) to calculate elevation, slope, and cosine-corrected aspect 
across the study area. NASADEM is a modernized DEM generated from the Shuttle
Radar Topography Mission (SRTM) that incorporates Advanced Spaceborne 
Thermal Emission and Reflection Radiometer Global DEM (ASTER GDEM), Ice, 
Cloud, and Land Elevation Satellite Geoscience Laser Altimeter System (ICESat 
GLAS), and Parameter-elevation Regressions on Independent Slopes Model 
(PRISM) datasets to create a robust elevation dataset.

3.2 Data Processing 
3.2.1 In-situ Data
The stem map data were filtered to include only conifer tree species, reducing our 
dataset to almost entirely ponderosa pine (99.5%). We then rasterized the filtered 
stem map dataset based on the number of trees calculated within a 20m x 20m 
grid to match the pixel size of the Sentinel-2 MSI images. We reclassified pixels 
based on their conifer density into categories of low (0-40 TPA), medium (40-150 
TPA), and high (>150 TPA). These categories were chosen based on assumed 
spectral separability, interests of resource managers, and data availability. This 
process gave us a total of 583 points, classified as low (521), medium (45), and 
high (17) regeneration.

Due to the abundance of low-density pixels from the field data, we established 
additional data points from planting sources focused on the medium and high-
density classes. We assigned these randomly selected points within the 
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reforestation plantings by ocularly categorizing density class within a 20m grid. 
We utilized NAIP imagery from 2015 in order to ensure similar growing status to 
the stem map data. This process gave us an additional 336 points classified as 
medium (181) and high (155) regeneration density. Combining the stem map and 
reforestation planting data produced a final dataset of 919 points, classified as low 
(521), medium (226),and high (172) regeneration density.

3.2.2 Satellite Data
After filtering the satellite images to our study area and date range, we used the 
pixel quality assessment (QA_Pixel) band of our Landsat 8 OLI images to mask 
clouds and cloud shadows. Sentinel-2 images did not undergo cloud masking 
because of frequent errors between snow and cloud cover by the QA pixels due to 
the satellite’s lack of a thermal band.

We then calculated the Normalized Difference Forest Snow Index (NDFSI) and 
Normalized Difference Snow Index (NDSI) for each image within the collection 
(Table 1). NDSI and NDFSI are spectral indices that are both used in the detection 
of snow cover. NDSI has improved performance in tree-less areas (Equation 2), 
where NDFSI has improved performance within tree cover (Equation 3). We 
included both index filters to account for a diversity of conditions found within the 
high-severity burn area. We applied a snow index filter across all images in the 
collection to only include pixels with NDSI and NDFSI values between 0.4 and 0.8. 
From the filtered images, we took the median pixel value from all resulting images 
to create our final image composite. The image composite was then clipped to the 
high-severity burn boundary as defined by MTBS.

Using the composite image, spectral indices included in the initial testing of the 
model were calculated over the area. NDVI, a common measure of vegetation 
greenness, served as our primary metric to detect conifer regeneration (Equation 
1). We also calculated the Normalized Difference Water Index (NDWI) for 
vegetation water content (Equation 4), Normalized Burn Ratio (NBR) for burn 
severity (Equation 5), and Soil-Adjusted Vegetation Index (SAVI) for areas of low 
vegetation cover (Equation 6) as additional variables in the Random Forest 
classification.

Table 1
Indices used for variable selection of Random Forest classification and image 
processing

                                     Spectral Indices Utilized
Index

Acronym Index Equation Description

NDVI

Normalized
Difference
Vegetation

Index

NDVI=NIR−Red
NIR+Red   (eq. 1)

 Used to identify
vegetation
greenness

(Buma, 2012)
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NDSI
Normalized
Difference

Snow Index
NDSI=Green−SWIR

Green+SWIR   (eq. 2)

Used to identify
snow cover

(Wang et al.,
2015)

NDFSI

Normalized
Difference

Forest Snow
Index

NDFSI=NIR−SWIR
NIR+SWIR   (eq. 3)

Used to identify
forested snow
cover (Wang et

al., 2015)

NDWI
Normalized
Difference

Water Index
NDWI=Green−NIR

Green+NIR   (eq. 4)

Used to
measure water

content in
leaves (Gao,

1996)

NBR Normalized
Burn Ratio

NBR=NIR−SWIR2
NIR+SWIR2   (eq. 5)

Used to identify
burn severity
(Roy et al.,

2005)

SAVI
Soil-Adjusted
Vegetation

Index
SAVI= NIR−Red

NIR+Red+0.5
×1.5 (eq. 6)

Used to correct
for soil

brightness in
low vegetated
areas (Vani &
Mandla, 2017)

3.3 Model
We first examined all spectral indices for collinearity and importance. We found 
that NDVI had a high degree of correlation to NDWI, NBR, and SAVI, leading us to 
remove them from the model. NDSI and NDFSI were also highly correlated, so we 
chose to include NDSI given that the majority of our study area was not considered
forested. For topographic variables, we found no initial correlation between slope 
or aspect and regeneration density in our data, and therefore also removed them 
from our model. For our final model, we chose to include NDVI, NDSI, and 
elevation as predictors of conifer regeneration classes.

We utilized Google Earth Engine’s Random Forest classifier (smileRandomForest) 
for modeling. Random Forest is a machine learning algorithm used to perform 
classification through a series of decision trees. It offers a non-parametric 
alternative and additional flexibility to better model large, noisy remote sensing 
datasets. 

We combined the stem map and reforestation planting points as evaluation data for
the model with an approximate 80% training, 20% validation split. The 177 points 
picked for validation are classified as low (107), medium (44) and high (26) 
regeneration density.  NDVI, NDSI, and elevation were used as predictor layers in 
the model. We incorporated these inputs into the smileRandomForest classifier. 
We performed a separate validation analysis in R using the randomForest package 
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to identify decision tree size. We chose 340 decision trees, as this selection 
produced the lowest mean squared error given our variable selection. The final 
model was applied across the snow image composite to classify the entire high-
severity burn area as low, medium, or high conifer regeneration.

4. Results & Discussion
4.1 Model Accuracy
The model produced an overall accuracy of 81.4% but varied across regeneration 
density classes, with accuracy decreasing as regeneration density increased (Table
2). This trend could be attributable to a limited dataset in the medium and high 
regeneration classes as well as increased spectral heterogeneity within the higher 
density classes. Furthermore, the higher density classes were largely comprised of 
ocularly sampled points, which may introduce additional errors when compared 
with the field-collected stem maps.

Table 2
Model accuracy assessment of the high-severity regeneration classification. The 
accuracy calculation is based on 177 points picked for validation.

           Model Accuracy Assessment 

Class
Classification according to

in-situ data Accuracy %
Low Medium High

C
la

ss
ifi

ca
t

io
n

ac
co

rd
in

g
to

 m
od

el

Low 97 4 1 95.1%
Mediu

m 7 26 4 70.3%

High 3 14 21 55.3%

4.2 Model classification
The model classified the majority of the high-severity burn area as low (45.9%) or 
medium (44.1%) regeneration, with high regeneration accounting for only 10% of 
the assessed area (Figure 2). These percentages suggest that 20 years post-fire, 
the majority of high-severity burn from the Jasper Fire is not at desirable 
regeneration densities
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Figure 2. Classified regeneration density across the high severity burn areas of the
Jasper Fire.

From the areas of low regeneration, we then identified 4,079 acres as high priority 
for reforestation efforts by our partners. These areas met additional criteria from 
our partners for feasibility and efficiency of planting, including patches greater 
than 50 acres each, less than 1500ft from roads, and not previously planted by 
USFS post-fire (Figure 3).
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Figure 3. 4,079 acres classified as low regeneration and meets partner criteria for
feasible replanting.

4.3 Project Limitations
We identified several challenges in applying snow-on imagery to detect conifer 
regeneration that have implications for future use of these techniques. The largest 
obstacles were accommodating the uncertainty of snow-cover imagery and 
adapting field data not initially collected for this purpose. While we found snow 
cover to be a viable technique to isolate conifer regeneration, it introduces an 
amount of uncertainty to analysis. Snow cover can be highly variable over the 
course of a season, between years, and over large regions. Some understanding of 
the site of interest is needed to properly determine snow cover dates and identify if
any snow index filtering would be required to ensure even snow cover. 
Additionally, an understanding of the general vegetation composition of the site is 
needed to properly assess if evergreen shrub cover would be a large component of 
the snow-cover NDVI. Applying these techniques to sites lacking snow cover, or to 
sites with large amounts of competing vegetation that would not be masked by 
snow, may not be feasible.

We also found that a large field-collected evaluation dataset is required in order to 
accurately assess density, as high-resolution satellite imagery is largely still not 
detailed enough to digitize individual seedling-sized trees. While the model seems 
to reliably represent the presence and absence of conifer regeneration at a low 
threshold, separating between multiple densities becomes challenging without 
robust field data designed for remote sensing analysis. In future study designs, 
there may be improved accuracy from collecting field data across an increased 
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range of regeneration conditions and topographic variables (e.g., elevation, aspect,
slope). As remote sensing indices are influenced by visible light differences 
introduced by these topographic variations, we would expect to see improved 
model performance by including data from a range of terrain conditions.

Additionally, post-fire analyses must be completed several years post-fire to ensure
conifer seedlings have enough time for recruitment and subsequent growth to a 
spectrally-detectable size. When conducting multi-temporal analyses, additional 
field data would likely be needed in order to account for differences between 
seedling recruitment and seedling growth. Additional understanding of site-specific
seedling growth rates would enable choosing an appropriate amount of time post-
fire to ensure regeneration is detectable by these techniques.

4.4 Future Work
These techniques could be used in the Black Hills National Forest to continue to 
monitor the forest recovery within the high-severity burn area. Additional 
assessments could help monitor the success of reforestation efforts and save 
resource managers time from conducting intensive field assessments. Expansion of
snow-on imagery monitoring applied to other wildfires occurring in conifer 
dominated landscapes would test the transferability of these methods. 

5. Conclusions 
Overall, we found snow-on remote sensing to be a viable technique to detect 
conifer regeneration in the Jasper Fire burn area. We were able to successfully 
map low, medium, and high regeneration across the high-severity burn and create 
data products to aid forest managers in reforestation efforts. The model’s higher 
accuracy in the low regeneration class provides confidence in the ability of our 
model to prioritize areas in need of reforestation efforts. Characterizing the spatial
pattern of forest regeneration will help resource managers prioritize reforestation 
efforts in the Black Hills. Additionally, this technique could be used to monitor and 
identify planting success long-term. This project will help the partner organizations
better leverage Earth observations to understand natural conifer regeneration and 
spectrally distinguish conifer growth from other vegetation. Providing a link 
between field data and coarse-resolution imagery will provide replicable, scalable, 
and affordable techniques for future post-fire recovery efforts.
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7. Glossary
Conifer – Trees or shrubs with needle-like leaves and seed-bearing cones. Most 
species are evergreen, keeping their green leaves despite seasonal changes.
Deciduous – Trees or shrubs which shed their leaves annually/seasonally.
Earth Observations – Satellites and sensors that collect information about the 
Earth’s physical, chemical, and biological systems over space and time.
Random Forest – The Random Forest model is a machine learning algorithm that 
utilizes a collection of decision trees using random subsets of variables. The 
Random Forest algorithm attempts to split the decision trees in a way that 
resulting groups are as different from each other as possible while maintaining 
that members within the subgroup are as similar to each other as possible.
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